CC9-Physiology

Section A

Each question carries one mark

Fill in the blanks

1.	is a mixture of phospholipids and lipoproteins which lowers the surface tension of
	alveolar fluid.
2.	The kidneys produce a hormone named which stimulates the production of red
	blood cells.
3.	in blood are rich in histamine.
4.	· 1
5.	The centro-acinar cells in the pancreas secrete ions.
6. <i>A</i>	A person with blood group is called universal donor and with blood group is
	called universal recipient.
7. I	Renin converts to
8. I	Pancreas is as well as gland.
9. 7	The dental formula for an adult human is
10.	The end product of amino acid nitrogen metabolism in uricotelic organisms (reptiles
	and birds) is
	The colour of blood after mixed with CO is
12.	The functional unit of kidney ision is a buffer system which helps in Acid-Base balance.
13.	ion is a buffer system which helps in Acid-Base balance.
14.	Platelets are important for
15.	Platelets are otherwise known as
16.	The pH of blood is
	The blood circulation was famously described by in 1628.
	RBCc are degraded by
19.	The decreased binding to carbon dioxide in the blood due to increased oxygen levels is
	known aseffect.
20.	A rise in the partial pressure of CO2 or a lower pH will cause dissociation of O2 from
• •	hemoglobin is known effect.
	Cyanide poisoning causes the colour of body
	The blood of horseshoe crab is and is due to pigment.
	are the most abundant WBCs.
	Multi-lobed nucleus is present in WBC.
	The percentage of eosinphils in human body is
	The predominant WBC involve in allergic reaction is
21.	The leucocytes which have bilobed nuclei and secrete chemicals that destroy large
20	parasites such as helminthes are known as
	lymphocytes make antibodiesare the largest WBCs.
	CO ₂ is transported in blood as ion.
	Vertebrate blood is ion. Vertebrate blood is coloured when oxygenated and in colour when
	deoxygenated.
	UVVA V CVII II VVI.

Section-B

Bail Hitonomous College Bailt Hitonomous Colle

Each question carries 1.5 mark (to be answered within 30 words)

Give the location and function of the following:

- 1. AV node
- 2. Brunner's glands
- 3. Chief cells
- 4. Islet of Langerhans
- 5. Parietal cell
- 6. Monocyte
- 7. Eosinphils
- 8. Killer T cells
- 9. Helper T cells

Define in one to two lines:

- 1. Deglutition
- 2. Erythropoiesis
- 3. Stroke volume
- 4. Diuresis
- 5. Mesobronchus
- 6. Serum
- 7. Coronary Sinus
- 8. Peyer's Patches
- 9. Tm (Transport Maximum)
- 10. Anemia
- 11. Cardiac cycle
- 12. Cardiac output
- 13. Coronary circulation
- 14. Alveoli
- 15. Monocyte
- 16. Eosinphils
- 17. Killer T cells
- 18. Helper T cells
- 19. Neutrophil
- 20. Leucocytes
- 21. Platelets
- 22. Thrombocytes

Section- C

Each question carries 2.5 mark (to be answered within 75 words)

Give reason for:

Delay of Action Potential at AV Node

Filtration through glomeruli is larger than other capillaries Alveoli don't collapse after forceful expiration

Calculate

- 1. Calculate end systolic volume if cardiac output is 5.0 L/min, heart rate is 75 beats/min and end diastolic volume is 145 ml/min.
- 2. Calculate the stroke volume and then find the cardiac output if end systolic volume is 60 ml, heart rate is 72 beats/min and end diastolic volume is 130 ml/min.

Write short notes

- 1. Ruminant stomach
- 2. Dentition in mammals
- 3. Renin-Angiotensin-Aldosterone system
- 4. Hering-Breuer reflex
- 5. Electrocardiogram
- 6. Homonal regulation of digestion
- 7. Composition of blood.
- 8. autoregulation of glomerular filtration rate
- 9. Acid-Base balance
- 10. Heart conduction system
- 11. Formed elements of blood
- 12. Pulmonary ventilation
- 13. Blood groups
- 14. Pancreatic hormones
- 15. Oxygen dissociation curve
- 16. Tachycardia
- 17. Ureotelic animals.
- 18. Homeostasis
- 19. Frank-Starling law
- 20. Rh factor
- 21. Coronary circulation
- 22. Counter-current mechanism
- 23. Blood cells
- 24. Lymph
- 25. Serum
- 26. Angiography
- 27. Arthrosclerosis
- 28. Coronary Heart Disease
- 29. Ballooning
- 30. MN blood group

Differentiate between the following

- 1. Crop and Gizzard
- 2. Holobranch and Hemibranch gills
- 3. Micelles and Chylomicrons
- 4. Haemoglobin and Myoglobin
- 5. Tidal volume and Vital capacity
- 6. Facultative and obligatory water reabsorption
- 7. Neurogenic and myogenic heart.

- 8. HbA and HbF
- 9. Bronchus and Bronchiole
- 10. Cortical Nephron and Juxtamedullary Nephron
- 11. Gastrin and Secretin
- 12. Basophil and neutrophil
- 13. Eosinphil and Basophil
- 14. RBC and WBC

Section- D

Each question carries 6 mark (to be answered within 500 words)

- 1. Describe the process of digestion of proteins in the gastro-intestinal tract.
- 2. Explain the process of blood clot formation and clot retraction.
- 3. Write a note on acid-base balance.
- 4. Explain how respiratory gases, oxygen and carbon dioxide, are transported by blood.
- 5. Elucidate the processes involved in the formation of urine in a nephron.
- 6. Discuss the origin and conduction of heart beat.
- 7. Correlate the various events of Cardiac Cycle with ECG.
- 8. Describe the phases of action potential in ventricular cardiac muscle fiber.
- 9. Describe the process of digestion and absorption of lipids.
- 10. Write a note on gastrointestinal hormones.
- 11. Depict the life cycle of RBC with the help of a flowchart.
- 12. Explain how $C0_2$, is transported in blood.
- 13. Comment on the factors affecting oxygen dissociation curve.
- 14. Outline the factors that stimulate and inhibit gastric secretion during cephalic, gastric and intestinal phases.
- 15. What is 'homeostasis'? Explain the extrinsic mechanism of blood coagulation with th help of a flow diagram.
- 16. Distinguish between obligatory and facultative water reabsorption by the renal tubule. How is facultative reabsorption controlled?
- 17. What do you understand by effective filtration pressure? Calculate its value in the renal corpuscles.
- 18. Explain with the help of diagram, how CO₂ transported by blood. Explain Haldane's effect.