DSE-II

1. An unknown chemical element is presented by the following formula: ${}^{A}_{Z}X$. What is the name of index Z?

NUCLEAR & PARTICLE PHYSICS

1 MARK QUESTIONS:

	A. Atomic mass	number	B. Ato	mic number	C. Principle quantum number				
	D. Orbital quan	tum number	E. Mag	gnetic quantum	number				
2.	An unknown chemical element is presented by the following formula: ${}^{A}_{Z}X$. What is the name of index A?								
	A. Atomic mass			mic number	C. Principle quantum number				
	D. Orbital quan	tum number	E. Mag	gnetic quantum	number				
3.	The atomic number	The atomic number is equivalent to which of the following?							
	A. The number	of neutrons in t	the atom.	B. The number of protons in the atom.					
	C. The number E. None of the a		he atom.	D. The numbe	r of $lpha$ –particles in the atom.				
4.	The atomic mass number is equivalent to which of the following?								
	A. The number	of neutrons in t	the atom.	B. The numbe	r of protons in the atom.				
	C. The number	of nucleons in t	he atom		lpha r of $lpha$ –particles in the atom.				
	E. None of the a								
5	Which of the follow	ing particles ha	s the smallest m	2222					
٦.	A. Proton	B. Electron	C. Neutron	D. Nucleus	E. Nucleon				
	A. FTOtoli	b. Liection	C. Neutron	D. Nucleus	L. Nucleon				
6.	Which of the follow	Which of the following statements about the mass of an atom is true?							
	A. It is evenly d	ivided between	the protons and	the orbiting el	ectrons.				
	B. It is evenly di	B. It is evenly divided between the nucleons and the orbiting electrons.							
	C. It is concentr	ated in the elec							
	D. It is concentr	D. It is concentrated in the nucleus.							
	E. It is evenly divided between protons, neutrons and orbiting electrons.								
7	Which of the follow	ing is correct fo	or the number of	inquitrancin the	a nuclaus?				
/.	Which of the follow	_							
	A. N = A - Z	B. N = Z - A	C. N = Z +A	D. N = Z	E. N = A				
8.	How many electrons are in the ${}^{12}_{6}C$ atom?								
	A. 12	B. 6	C. 18	D. 3	E. 9				
9.	How many nucleons are in the $^{20}_{10}Ne$ atom?								
	A. 12	B. 30	C. 18	D. 10	E. 20				
10. How many neutrons are in the $^{23}_{11}Na$ atom?									
_0.	A. 12	B. 11	C. 18	D. 24	E. 9				
	,		5. 10	J. L.					

11. How many protons are in the $^{14}_{7}N$ atom?							
	A. 14	B. 6	C. 7	D. 10	E. 9		
 12. What law did Ernest Rutherford use to estimate the size of the nucleus? A. Conservation of nucleon number B. Conservation of angular momentum C. Conservation of linear momentum 							
D. Conservation of energy							
E. Conservation of charge							

- 13. Why are nuclear energy levels more complex than electron energy levels?
 - A. Nuclear energy levels depend only on attractive forces.
 - B. Nuclear energy levels depend on attractive and repulsive forces.
 - C. Nuclear energy levels are an order of one hundred times as great as electron energy levels.
 - D. Electron energy levels depend on the interaction between neutrons and electrons.
 - E. Electron energy levels have greater energy than the nuclear energy levels.
- 14. Which of the following about the nuclear force is true?
 - A. It is an attractive force between electrons and protons in an atom.
 - B. It is an attractive force between electrons and neutrons in an atom.
 - C. It is much weaker than the electromagnetic force.
 - D. It is much weaker than the gravitational force.
 - E. It is a strong, short-range, attractive force between the nucleons.
- 15. What force is responsible for the radioactive decay of the nucleus?
 - A. Gravitational force
 - B. Weak Nuclear force
 - C. Strong Nuclear force
 - D. Electromagnetic force
- 16. Isotopes of an element:
 - A. have the same number of protons and electrons, but a different number of neutrons.
 - B. have the same number of protons and neutrons, but a different number of electrons.
 - C. have different number of protons.
 - D. have different number of electrons.
 - E. have the same number of neutrons and protons.
- 17. Binding energy is:
 - A. the amount of energy required to break a nucleus apart into protons and neutrons.
 - B. the amount of energy required to break a nucleus apart into protons and electrons.
 - C. the amount of energy required to break a nucleus apart into electrons and neutrons.
 - D. the amount of energy released when neutrons change energy levels.
 - E. the amount of energy released when protons change energy levels.

18.	If m_H is the atomic mass of Hydrogen, m_n is the mass of a neutron, and M is the atomic mass of the atom which of the following is the mass defect formula?								
	_			Z'm _H + N'm _n + M	C. $\Delta m = Z'm_H - N'm_n - N$	C. $\Delta m = Z'm_H - N'm_D - M$			
		- N·m _n + M		$M-Z^*m_H-N^*m_n$					
19.	When nucleons for	orm a stable nu	ıcleus, bindi	ng energy is:					
	A. created fro	om nothing.		B. destroyed into no	othing.				
		ed into visible li	_	_	orbed as high energy photons or particles.				
	E. released as	s high energy pl	hotons or pa	articles.					
20.	When a nucleus is divided into its constituents, energy is:								
	A. created fro	_		B. destroyed into no					
		ed into visible li	_	•	nucleus which then breaks it	apart.			
	E. released by	y the nucleus as	s it breaks a	part.					
21.	An isotope with a high Binding Energy per nucleon:								
	· · · · · · · · · · · · · · · · · · ·	· ·	d of time.	B. is very unstable.					
	C. is very stab			D. has very few elec	s very few electrons.				
	E. has more p	protons than ne	utrons.						
22.	Why do heavier r	Why do heavier nuclei have a greater ratio of neutrons to protons than lighter nuclei?							
		A. to add more nucleons so that the binding energy is greater.							
	B. to provide a greater weak nuclear force.								
		C. to provide more attractive electromagnetic force.							
	D. to provide more attractive strong nuclear force to balance the repulsive electromagnetic force. E. to provide more repulsive strong nuclear force to balance the attractive electromagnetic force.								
	E. to provide	inore repuisive	e strong nuc	lear force to balance	e the attractive electromagni	etic force.			
23.	Which of the follo		•		- 4				
	A. $_{+1}^{0}e$	B. $_{-1}^{0}e$	C. ½n	D. ${}^1_1 H$	E. ⁴ He				
24.	. Which of the following is the eta^- particle?								
	A. $_{+1}^{0}e$	B. $_{-1}^{0}e$	C. 1_0n	D. ${}^1_1 H$	E. ⁴ ₂ <i>He</i>				
25.	Which of the following is the eta^+ particle?								
	A. ₊₁ ⁰ e	B. $_{-1}^{0}e$	C. ${}_{0}^{1}n$	D. 1_1H	E. ⁴ He				
26.	Which of the following about the gamma ray is true?								
					B. It carries a negative charge.				
		eflected by a m			D. It can be deflected by an electric field.				
	E. It has zero	rest mass and a	a neutral ch	arge.					

27. Which type of radiation is stopped by a sheet of paper?

B. beta particle

E. Ultraviolet radiation

C. Gamma ray

A. alpha particle

D. X-ray

28. What is the missing element from the following equation $^{226}_{88}Ra \rightarrow ? + ^{4}_{2}He?$								
	A. $^{230}_{86}Rn$	B. $^{220}_{86}Rn$	C. $^{228}_{86}Rn$	D. $^{222}_{86}Rn$	E. $^{224}_{86}Rn$			
29.	29. What is the missing element from the following equation ${}^{14}_{6}C \rightarrow ? + {}^{0}_{-1}e?$							
	A. $^{13}_{7}N$	B. ${}^{12}_{6}C$	C. $^{17}_{8}0$	D. $^{16}_{8}O$	E. $^{14}_{7}N$			
30.	30. A 100 g sample of a radioactive element has a half-life of 5 days. How many grams of radioactive materia will remain after 15 days?							
	A. 100 g	B. 50 g	C. 25 g	D. 12.5 g	E. 0 g			
31. A reaction that releases more energy than is put into it is called: A. endothermic B. exothermic C. nuclear D. chemical E. radioactivity								
32. The following reaction: ${}_{0}^{1}n + {}_{92}^{235}U \rightarrow {}_{56}^{141}Ba + {}_{36}^{92}Kr + 3{}_{0}^{1}n$ is called:								
	A. Fusion	B. Fission	C. alpha decay	D. bet	a decay	E. gamma decay		
33. The following reaction: ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$ is called:								
	A. Fusion	B. Fission	C. alpha decay	D. bet	ta decay	E. gamma decay		

1.5 MARK QUESTIONS:

- 1. What is the relation between mass no. and nuclear radius?
- 2. What is atomic mass unit?
- 3. Define binding energy.
- 4. Define packing fraction.
- 5. What are magic numbers?
- 6. What is semi-empirical mass formula?
- 7. Define half-life period.
- 8. Define radioactivity.
- 9. What is nuclear stability?
- 10. Define parity.
- 11. What is the Q-value of nuclear reaction?
- 12. Which quantities are conserved in nuclear reactions?
- 13. What is dead time of G-M counter?
- 14. What is recovery time of G-M counter?
- 15. What do you understand by the energy resolution of a detector?
- 16. What is a Van de Graaff generator?
- 17. Describe the principle of a linear accelerator.
- 18. Quarks come in how many flavours?
- 19. Write the name of hadron family.
- 20. What are bosons?
- 21. What are fermions?
- 22. What are gauge bosons?
- 23. What is strangeness?
- 24. What is isospin?
- 25. What is glue ball?

2.5 MARK QUESTIONS:

- 1. Distinguish between Fermions & Bosons?
- 2. Why are kaons and hyperons strange particles?
- 3. What is the difference between particle and its antiparticle?
- 4. $p + p = p + n + \pi^{+}$ Is the reaction possible?
- 5. $e^+ + e^- = \mu^- + \sum^+$ Is the reaction possible?
- 6. What is charge conjugation?
- 7. How is a neutrino different from an antineutrino?
- 8. Write the properties of nuclear force?
- 9. Prove that nuclear density is independent of mass no.?
- 10. Explain binding energy curve?
- 11. Give reasons for the non-existence of electrons in the nucleus.
- 12. Explain nuclear magnetic moment.
- 13. What are the success of nuclear shell model?
- 14. What is the use of semi-empirical mass formula?
- 15. What are the draw backs of liquid drop model?

- 16. Distinguish between nuclear fission and nuclear fusion.
- 17. Why are particle accelerators required?
- 18. What are the disadvantages of a linear accelerator?
- 19. How does Cyclotron accelerator operate?
- 20. State the law of radioactivity.

5 MARK QUESTIONS:

- 1. Explain the postulates of liquid drop model. Give a simple derivation of semi empirical mass formula.
- 2. Explain fermi gas model of nucleus.
- 3. Give salient features of nuclear shell model and point out its success and failures.
- 4. What is radioactivity? State the law of radioactivity. Show that radioactivity decay is exponential in nature.
- 5. What is β decay? Discuss briefly the selection rules for β decay.
- 6. What is a nuclear reaction? Discuss conservation laws for nuclear reactions.
- 7. Explain the working, principle and construction of the G-M counter.
- 8. Explain the difference between ionization chamber, proportional counter and G-M counter. How is quenching achieved in G-M counter?
- 9. Explain the principle and working of a scintillation counter.
- 10. Explain the principle, construction and working of the cyclotron.
- 11. What are elementary particles? Classify them on the basis of their spin.
- 12. What are guarks? Give qualitative description of guark model.